
UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 1

 United Certifications - Testing Fundamentals for
Software Engineers (Developers and Administrators)

Syllabus

Released
Version 1.0 01-04-2023

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 2

Copyright
This document may be copied, in whole, or in part if the source is clearly stated.

All Certified Testing Fundamentals for Software Engineers materials, including this document,
are the property of Certified Testing Fundamentals for Software Engineers.

Use is subject to the following terms and conditions:

• Any individual or company may use this syllabus as the basis for a training course,
provided the syllabus is cited as the source and the copyright holders are clearly stated.
To use the syllabus in a training course, you must be accredited. More information on
accreditation is available through Brightest.

• Any individual or company may use this syllabus as the basis for articles, books, or other
derivative appearances, provided the source and copyright are clearly stated.

Word of thanks
The authors would like to thank several people in particular in the creation of this work. It has
long been a desire to be able to compile or record experiences in this narrative. This could not
have accomplished without the help of the following people. A special thanks to all of them for
making it possible, in one way or another, for this story to come about: Annelies van Rijn,
Valentijn Duijser, John Wittmaekers, Anne Laura Drost-Douma, David de Roo, Sjoerd Walinga,
Khadidja Zegrir, Jose Correia and Kyle Siemens. And of course all other colleagues at Concept7
and the surrounding United Portfolio of Brightest for supporting the merit of this document.

Version
Version Date Comments

1.0 01-04-2023 First Publication

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 3

Table of Contents

Introduction 5

Chapter 1: Getting acquainted with Testing 9
What exactly is testing? 9
What is Quality? 9
Quality Attributes 10
Dependancy on Software 10

Chapter 2: Having the Right Focus for Testing 12

Chapter 3: The Eight Test Practices 13

Practice 1: Make No Assumptions 14

Practice 2: Testing is Logical Thinking 17
Regression 19
Test Automation 19
Test Tooling 20

Practice 3: Testing Everything is Impossible 22
What is a Test Strategy? 23
Creating a Test Strategy: Gathering Information 23
Creating a Test Strategy: Sketch the System 24
Developing a Basic Test Strategy through Risk Analysis 24
Risk Assessment to Construct a Test Strategy 25
Test Objectives 27
The Risk-based Test Strategy 27
Pareto’s Analysis (Example Risk Assessment Method) 28
Root Cause Analysis 28

Practice 4: Be Specific 30
Example Business Requirement: 31
Being Specific: While Reporting a Defect 32

Practice 5: Test as Early as Possible 34
Test Environments 35
Understand the Importance of a Good Testing Environment 36
Using Stubs and Drivers 36
Test Data 37

Practice 6: Start Small and Gradually Expand your Testing Scope 39
Test Level 1 - Unit Testing 39
Test Level 2 - Integration Testing 39
Test Level 3 - System Testing 40
Test Level 4 - Acceptance Testing 40
System Integration Testing 40
End-to-End Testing 41
Test Types 41
Implementing Test Levels and Test Types in Test Strategy 41

Practice 7: Documenting your Tests 43
Using Test Techniques 46

Process Flow Test 46

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 4

Steps to Construct a Process Flow Diagram 47
Creating the Test Script 47

Semantic Test Technique 49

Decision Tables 51

Boundary Value Analysis 53

Equivalence Partitioning 54

Checklist-based Test Technique 55

Pairwise Testing Test Technique 56

Practice 8: Understand the Importance of Good Communication 61

Chapter 4: Quality Attributes, focusing on Security, Usability, and Performance 64
Quality Attribute: Security 64
Quality Attribute Security: OWASP Top Ten example: Broken Access Control 64
Quality Attribute Security: CRUD Matrix 65
Quality Attribute Security: OWASP Top Ten example: Cryptographic Failures 65
Quality Attribute: Usability 66
Quality Attribute: Performance 67

References 68

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 5

Introduction
Purpose of this document
This syllabus forms the basis of the Testing Fundamentals for Software Engineers (TFSE)
certification. This document describes what you need to know to pass your exam. This
document and the training program, including exam, are copyrighted. The exam will only
include questions on concepts and knowledge explained in this document.

The different components of the training are also available on the official Certified Testing
Fundamentals website for software engineers. These components consist of:

• A complete list of training providers and available course dates. A course is
recommended but not required to take the exam.

• The syllabus (this document) to download.

• A complete practice exam of 40 questions and a document with answers to use in
preparation for the real exam.

• We aim to have the documents available in multiple languages. Stay tuned to the
website for further developments

Purpose of this syllabus
Testing is not an exact science. There are multiple, countless ways to achieve the goal:
generally, an application free of serious and potentially costly errors. This course does not
describe all facets of testing, nor does it teach you all the aspects of testing that exist.

There are plenty of other courses that zero in on aspects of testing in detail. More specific
courses may be required if you want to become a test engineer or learn more about testing in
depth.

The Certified Testing Fundamentals for Software Engineers course provides the essentials. It
outlines a practical and pragmatic approach, providing methods that can be directly applied in
most everyday projects.

The goal of this course is to teach some specific test skills to developers and administrators.
This course is suitable for people with a range of experience, regardless of their level of
senority.

Outcome after attending this training (Business Objectives)
BO 1 Learn practical issues about testing and quality as a developer or administrator.

BO 2 As a developer or administrator, understand the basics of testing and quality.

BO 3 Understand the prerequisites and principles for performing a good test.

BO 4 As a developer or administrator, learn a variety of tools for improving quality.

BO 5 As a developer or administrator, learn a number of different ways to create a test
script.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 6

Learning Objectives
Learning objectives are short descriptions of what you need to remember after reading the text
in question. There are 3 levels [I]:

• K1: Remembering

• K2: Understand

• K3: Apply

The following table summarizes all the learning objectives (LOs) of this course.

LO1 Remember what is meant by testing. (K1)

LO2 Remember what is meant by quality. (K1)

LO3 Remember that you can look at quality in different ways using the quality
attributes. (K1)

LO4 Understand the need for testing. (K2)

LO5 Understand the difference between the focus of developers and the focus of
testers. (K2)

LO6 Apply some key testing practices. (K3)

LO7 Memorize some specific test terms. (K1)

LO8 Understand the test practice of make no assumptions. (K2)

LO9 Understand the practice that testing is logical thinking. (K2)

LO10 Understand the importance of regression testing. (K2)

LO11 Recall the pros and cons of test automation (K1)

LO12 Understand the practice that testing everything is impossible. (K2)

LO13 Understand the importance of having a test strategy (K2)

LO14 Apply risk analysis in your testing (K3)

LO15 Understand what Pareto’s analysis involves (K2)

LO16 Understand how capturing the cause of incidents can help you improve your
SDLC. (K2)

LO17 Apply the practice of being specific. (K3)

LO18 Understand the practice of testing as early as possible. (K2)
LO19 Types of environment including testing (K2)
LO20 Understand the importance of a good testing environment (K2)
LO21 Understand the importance of test data (K2)
LO22 Understand the practice of starting small and gradually expanding your testing

scope. (K2)
LO23 Recall test levels and test types (K1)
LO24 Understand how test levels and test types apply to a test strategy (K2)
LO25 Recall a basic testing process (K1)
LO26 Understand the value of documenting your testing. (K2)
LO27 Learn to create a test script by drawing out the process/program. (K3)

LO28 Learn to create a test script using the semantic test. (K3)

LO29 Learn to test functionality using a decision table. (K3)

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 7

LO30 Learn to deepen your testing by using boundary value analysis. (K3)

LO31 Learn to deepen your testing by using equivalence classes. (K3)

LO32 Learn how to test using a checklist. (K3)

LO33 Learn the test technique of pairwise testing. (K3)

LO34 Understand the importance of good communication in all your activities as a
tester. (K3)

LO35 Learn the basics of testing for security. (K2)

LO36 Learn the basics of usability testing. (K2)

LO37 Learn the basics of performance testing. (K1)

Prerequisites
No specific prior knowledge is required; however, it is helpful if you have some experience with
one or more of the following areas: software development, project management, managing
software, accepting software, and/or testing software.

General Notes
To maintain the flow in the text of this document and courseware, the authors may refer to:

• “Software,” in some places where “Product, Service and/or System” is intended

• “Software engineers,” in some places where developer or administrator is intended

• “SDLC,” is the abbreviation for Software Development Life Cycle.

Note from the main author Mattijs Kemmink:
Over 20 years prior to initiating the creation of this syllabus, I began my career as a software
tester. I actually wanted to be a software developer, but my employer followed a policy that
software developers must start as testers. At the time, I had to ask what testing was because I
had not heard of the concept as a role. However, I was happy to get a permanent job with a
large employer. And so began the first steps on my software testing path. In the years that
followed, I had opportunities to switch from tester back to developer several times, but I kept
returning to my testing roots.

Throughout this syllabus, I hope to take you on a journey through some of my experiences in
the world of testing, relating them to the theory of well-known testing methodologies. I will
present the concepts as straightforward as possible, trying to do so as I experienced them
throughout my career without unnecessary baggage. However, realize that testing is never
simple as it is always customized and is dependent on the relevant situation and environment.
Please note that this course is not a replacement for standard theoretical courses (e.g., the
ISTQB), as the QA field is simply too large for that. My goal in this course is to provide
participants with a relevant experience to better understand the role of the tester and the
importance of the field. I aim to help people improve the overall quality of products that they
collaborate to produce and provide the knowledge that I wish I had had at the start of my
career. I hope to teach you practical aspects that are immediately applicable in your daily
practices. Throughout my career, I have come across many developers and administrators who

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 8

were involved in and very concerned about quality and wanted to learn more about how to get
involved, but did not know where to start. These are the people that I’m hoping to help with
this certification course.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 9

Chapter 1: Getting acquainted with Testing

LO1 Remember what is meant by testing. (K1)

LO2 Remember what is meant by quality. (K1)

LO3 Remember that you can look at quality in different ways using the quality
attributes. (K1)

LO4 Understand the need for testing. (K2)

What exactly is testing?

“Testing” has many definitions. In this course, “testing” will be defined as follows: “a process
that provides insight into and advises on quality and related risks.” [II]

There are two valuable components: “quality” and “risk.” Quality is defined and detailed in the
section that follows, but it should first be noted that one might assume testing is the only
means of providing insight into quality. However, there are other ways to achieve quality.
Testing is in itself a reactive measure because it takes place when the product already has been
created. But, something that can be more useful and efficient than testing, in many cases, is
reviewing. This is because you can often carry out a review even before the product is
developed. By reviewing, you can increase quality early on by improving the requirements that
have been created, creating requirements that are missing, or removing redundant
requirements.

The second part of the definition of “testing” that needs highlighting is “risks.” Risks already
exist because you provide insight into them with testing. If a risk analysis has been done for a
specific project, then you can check to what extent the risks are still current. Testing can also
reveal new risks. Through testing, organizations aim to find and eliminate or mitigate risks with
respect to their operations. Testing might also be carried out to meet regulatory requirements,
or to ensure that business processes, products, and IT solutions deliver quality.

What is Quality?

“Quality” is defined in this course as follows: “Quality is the set of attributes and characteristics
of a product or service that is important for meeting established or obvious needs” [III]. In
simpler terms, we might say that quality consists of attributes and characteristics, and quality
corresponds to expectations that may or may not be established.

This definition of “quality” references one of the trickier aspects of testing: “unestablished
needs.” When dealing with a list of requirements there will be some unestablished needs that
might be obvious to certain stakeholders and not so obvious to others. For example, consider
closing an application with the X button (exit) in a Windows environment vs. an Apple
environment: the same action would be on a different part of the screen.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 10

Quality Attributes

If we considering that “Quality” deals with “attributes and characteristics” (taken from the
previous quote [III], then we should consider that “Quality Attributes” are different ways of
looking at quality. The ISO 25010 [IV] standard describes a number of quality attributes that can
help us in software testing. Some examples of these are: functionality, security, performance,
usability, maintainability, and portability. The ISO 25010 classification and subdivision of quality
into quality atributes is very useful in software testing. We will look at some of the quality
attributes in more detail in a later chapter.

Dependancy on Software

Software is everywhere these days; it is nearly impossible to live without it. Just think about
having to live a day without your smartphone—this would take quite a bit of getting used to for
many people. You could probably survive without your phone, but life with a smartphone is a
lot faster and easier.

As your smartphone makes your daily life more efficient by relying on software, if we take a
look at the bigger picture, our society has processes that are also highly dependent and
improved by the use of software. Just think about all the automated processes of the
government, and take the example of tax collection. If we returned to filing taxes without
computers, the process would take much longer, cost more, and require substantial human
resources. Another example is train systems. Software controls train schedules, access controls,
and season tickets; it would certainly be a shock if we returned to carrying out these processes
without software. As we want society to continue to function efficiently, we must ensure that
software is also reliable and continues to function.

In addition, and precisely because we rely on it, we want software to function as intended. For
example, take the software that makes the airbags in a car deploy in an accident. We want this
to happen exactly as intended. If the airbags are deployed too late, there will be damage; if
they are deployed too early or unexpectedly, there will be damage as well. In this example, the
most crucial damage that airbags are implemented to prevent is physical injury; however, there
could also be material damage to the vehicle, immaterial damage such as psychological
consequences, or significant financial damage. This example illustrates how software testing is
imperative in preventing damage, demonstrating quality, exposing and mitigating risk, and
ensuring continuity.

Definitions

Testing A process that provides insight into and advises on quality
and related risks.

Quality The set of attributes and characteristics of a product or
service that are important for meeting established or
obvious needs.

Quality Attribute A characteristic of an information system.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 11

Risk A factor composed of probability and impact that can have
consequences.

Functionality A thing’s usefulness, or how well it does the job it is meant
to do.

Maintainability The degree to which a product or system can be changed
effectively and efficiently by designated administrators.

Portability The degree to which a system, product or component can
be effectively and efficiently transferred from one
hardware, software or other operational or usage
environment to another.

Review The activity of evaluating a product or process with the goal
of finding errors or making improvements.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 12

Chapter 2: Having the Right Focus for Testing

LO5 Understand the difference between the focus of developers and the focus of
testers. (K2)

As a developer, it can be difficult to test well. A developer’s main goal is often to create a
working product based on given specifications. The developer’s focus is on delivering a
customer-defined and appropriate product. As developers are mainly focused on the end
results or solutions, they are less likely to notice peripheral issues.

A tester, on the other hand, has a completely different goal: to look at the application in every
possible way and see if it functions correctly. A tester’s focus could be considered the opposite
of a developer’s focus, which is why there is a natural job differentiation between testers and
developers. This is why it can be tricky to combine these two very different perspectives at the
same time.

However, if it is your responsibility to do both, there are some tips you can use to make it
easier. For example, you could agree with a colleague that you test each other’s work in order
to enable a more independent view and detach yourself from the development focus. You
could also designate a separate test day for yourself, or set aside a separate moment in the day
when you consciously focus on testing instead of development. Having the right focus is crucial;
some concrete tips will be discussed in the next chapter.

As an administrator, you can also use an awareness of these challenges to better understand
why testing is sometimes excellent and sometimes lacking. One of the things you can do is
question developers about their testing process, e.g., whether they employ testers, whether
their developers also test, etc. If you are still in the contract negotiation phase, you can even
propose explicit requirements for this. Of course, if you are an administrator who does
software development or configuration yourself, you can apply the above tips for development
in your own work.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 13

Chapter 3: The Eight Test Practices

LO6 Apply some key testing practices. (K3)

LO7 Memorize some specific test terms. (K1)

To make the subject matter of testing as accessible as possible, we have formulated a number
of practices based on experiences in the world of testing. These practices are linked to a
number of concrete applicable activities, which should provide insight to help you maximize
software quality. Adherence to these practices can reduce the chance of errors significantly.
And even as a non-tester, you will still be able to improve quality of software, processes, and
requirements. The principles we would like to explain are:

1. Make no Assumptions.
2. Testing is Logical Thinking.
3. Testing Everything is Impossible.
4. Be Specific.
5. Test as Early as Possible.
6. Start Small and Gradually Expand your Testing Scope.
7. Documenting your Testing.
8. Understand the Importance of Good Communication

Each of these will be explained in the sections below. In addition to these practices, there is
another important universal principle that applies: testing always depends on context. In this
case, “context” means environmental factors and the project conditions. Environmental factors
include the specific industry or sector in which the test is taking place; the nature of the
software you are creating, as well as the organization or project; and the legal requirements,
regulations, guidelines, and industry standards that apply. Project conditions include time,
money, and quality.

Also note that you can both apply these practices yourself and know that others building or
testing software for your organization should apply these practices. You can always apply this
to a vendor by asking for it or giving it as a condition.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 14

Practice 1: Make No Assumptions

LO8 Understand the test practice of make no assumptions. (K2)

The basic rule for all testers is “do not make assumptions”—this is the answer you will get from
anyone in testing. As a tester, you need to have an extremely critical attitude toward what you
are testing, as well as possess a healthy dose of distrust. As a tester, you should check basically
everything, i.e., whether the system works as described. You should also check whether what
was described is what the customer needs. The former is called “verification” in the testing
world: the process of checking that the software does what was specified. The latter is called
“validation”: checking that the specification does what the customer needs and/or expects. [V]

As a tester, you will sometimes have to assume that what is described is what the customer
wants. At other times, you will have to assume that the supplier’s specifications are correct. In
terms of best practices:

• assume that everything described or said about the software should also be verified;

• it should also be validated that what the customer want has been built.

A typical example of an assumption is thinking that if something works in one environment, it
will also work in another environment. In fact, this is very often not true. Notice that when it
comes to configuration management, for example, there are different versions of web
components for different environments, and some components may not be considered to exist
in particular environments. For these reasons, different components might not even be noticed
in certain environments.

Take as an example a relatively simple system (see below Figure: Overview of Environments) in
which we have an information system that consists of a database, code, functions, and an
external software component, that are all published on a web page. In the figure, the green
check marks in the images depict what is going well and what has been tested. The red circles
indicate defects.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 15

Figure: Overview of Environments

If you are building this system, you can test it thoroughly in your development environment—
how it should be.

However, after you have carried out the test in the development environment, you need to
deploy it to the test environment. As you have tested that the functionality works, you are
likely confident that it will work in the test environment as well. But a number of questions
arise: what if you forget to deliver a component? What if you need to use a different address
for third-party software (think of certain plugins)? What if you need a different certificate in a
different environment? Authorizations will also have to be reassigned. Are these right the first
time? If so, how do you know that the different roles you had defined also work? Sometimes
when tests done with the admin role work fine, they suddenly do not work for a regular user.
On top of all this, the client may have a severely outdated or untested web browser that may
create errors that you did not encounter with your test in the development environment.

This does not mean that you have to repeat the entire test in the test environment and then
again on production: you have already demonstrated that the functionality works. However,
while you might have tested everything extensively in the development environment, you
might now additionally test a few instances that demonstrate that delivery is complete and that
all components are there. The important point of this is that if you dynamically verify that it
works, you have the greatest chance of getting it right. If dynamic verification cannot be done,
you can also check or validate statically. It is also important to communicate. When in doubt
about whether something is intended, contact the tester or the compiler of the requirement.
Static and dynamic verification/testing will be elaborated in practice 5 of this syllabus.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 16

Later in this syllabus, we will also discuss communication in more detail. For now, it is important
to remember not to make assumptions. Additionally, if you are a developer or administrator,
you must do away with assumptions such as “testing is difficult,” “testing is for testers,” “there
is no time for testing,” “I have done all the unit tests,” “there is good logging,” “the testers
should also have something to do,” “testing is boring,” and “it works on my environment.”
Without training, it is possible to feign ignorance, but after attending this training, you will
know better.

In summary: if possible, try to verify everything. If possible, do it dynamically by carrying it out.
Be careful not to duplicate tests. For example, you will no longer need to test the code of your
component very extensively in the test or production environment. If dynamic verification is
not possible, try validation. In any case, the most important thing is that you communicate
what you choose to do.

Definitions

Assumption An assumption, premise, or hypothesis which has not been
proven.

Configuration management Configuration management focuses on the versioning of
items throughout the SDLC. It enables the tracking of which
specific instance of a design belongs to which specific
instance of code.

Test Environment An environment containing hardware, instrumentation,
simulators, software programs, and other supporting
elements necessary to perform a test.

Validation The process of checking that the specification does what
the customer needs/expects.

Verification The process of checking that the software does what is
specified.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 17

Practice 2: Testing is Logical Thinking

LO9 Understand the practice that testing is logical thinking. (K2)

LO10 Understand the importance of regression testing. (K2)

LO11 Recall the pros and cons of test automation (K1)

Software testing is not very complicated, and it often comes down to some basic logic. Take the
statement below:

‘IF it rains, THEN you get wet.’

If you wanted to develop this requirement, you could turn this into code fairly quickly. Then you
probably would run a unit test for this, as you usually do when you develop software. The latter
is an assumption, and, of course, it never hurts to ask if and how someone tested. Keep in mind,
however, that in development, the focus is on realizing things and turning requirements into
code. The primary focus is on the solution. If you want to put yourself in the shoes of a tester,
however, you will have to approach the requirement very differently. For example, what if it
doesn't rain? Will you get wet? And what if it does rain, but you don't get wet? What should
happen in that situation?

As a tester, you will want to check the following things:

Scenario It rains You get wet

1. True True

2. True False

3. Untrue True

4. Untrue False

Table: Possible Outcomes of an Assertion

You would need to validate that the 2nd scenario cannot occur and that the other scenarios can
occur to confirm that the statement is true.

The example above is not about IT. Now take, as another example, the following requirement:

‘IF I am an administrator of this system, THEN I want to be able to change users’

Scenario I am an administrator I am able to change users

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 18

1. True True

2. True False

3. False True

4. False False

Table: Possible Outcomes of an Assertion

Seeing this example, we immediately understand that being able to add, modify and delete
users as a non-administrator is not desirable.
This would definitely need to be tested. In addition to your focus on realizing the requirement,
try to focus on the “What-If” or “False” situations as well.

If we take the example of uploading a .pdf file on a website, the importance of logical testing
becomes even clearer. Take the following requirement:

'IF I am an administrator, THEN I want to be able to add a .PDF file to a website.'

If you look at what you need to accomplish as a developer, testing is limited. However, as a
tester, this case should involve much more testing. Uploading files with a different extension
can have undesirable consequences. You also want to check that users without administrator
access cannot upload files.

The following table illustrates what is meant by this:

 1 2 3 4

I am administrator Y Y N N

File is a .pdf Y N Y N

File can be uploaded X

No action X X X

Table: decision table for uploading a file

It should now be clear that at least 4 test cases should be carried out. But a quick inventory
shows that there are a number of roles besides “administrator” and “user,” so path “3” should
be tested with all those roles. Also, there are several other file extensions that you would want
to exclude for legal or security reasons, e.g., .doc, docx, .ppt, .exe, .zip, .rar., etc. This leads to
more situations in path “2” than one would think at first sight.

In addition, just checking for an extension may be insufficient. A .pdf file can also contain
malicious content. So you should suggest that the requirement be expanded to include an

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 19

additional requirement for the integrity of the file. For simplicity sake, let us park this as a side
note for now.

One might argue that there is no reason to do an extensive check in this case because this is an
administrator. After all, the permissions of an administrator are reserved only for a few people
who generally know what to do. However, the functionality here could be reused elsewhere, or
the password for an administrator could be discovered, so an extensive check may be
beneficial.

Regression

We can already see that for relatively simple functionality, quite a lot of reasons can arise to
test something. It also becomes quite clear that the testing process can become quite large.
Now, imagine that the requirement in this example was modified after the testing process for
the original requirement was completed. Let’s say that another file type is now allowed. The
new functionality would look like this:

 1 2 3 4 5 6 7 8

I am administrator Y Y Y Y N N N N

File is a .pdf Y Y N N Y Y N N

File is a .doc Y N Y N Y N Y N

File can be uploaded X X X

No action X X X X X

Table: Decision Table for Uploading a File with a New Requirement

You thought you already had many test cases in the original situation, but now you see that the
number is increasing. One reason that should be noted here is that you cannot assume that the
changes in the code did not have unintended side effects on the existing functionality and
therefore the original test cases must be tested as well. Remember to consider the functionality
you want to test for regression with each new change. The tests for verifying that existing
functionality remains unaltered are called regression tests. Regression testing is generally
suitable for test automation due to its repetitive nature.

Test Automation

Before tests can be automated, manual testing is always required to gain an understanding of
the system and to know what is required to create automated test scripts. Test Automation
usually refers to the automated execution of tests: a relatively narrow definition. The definition
could perhaps be expanded to state “automating parts of the test process” because it is often
desirable to automate time-consuming tasks throughout the test process in an easy and cost-
effective manner. Although there are many benefits to automating testing tasks, there are

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 20

arguments to consider that can be made against test automation. For example, to automate
something in the SDLC a mature process as well as an investment of time, money, and
resources are required. This may mean that it may take some time to receive a return on your
initial investment.

Test automation can be valuable, for example, when large numbers of (regression) tests in
mature complex software environments are being performed over long periods of time. Other
examples of situations that lend themselves to test automation are large projects in which the
same areas need to be tested over and over again (projects with many iterations). Test
automation can also be useful in projects that have already undergone an initial manual testing
process. Implementing test automation for a mature software product can improve the cost
efficiency of testing and increase the overall test coverage.

In general, test automation lends itself well if basic testing processes are mature, or in other
words, if there is a well-established testing strategy in place, including different test types of
tests that cover the different test objectives.

Some typical pitfalls of test automation to be aware of:

• Automation is a means; it is still sometimes seen as an end.
• It involves building yet another application that needs to be designed, learned,

managed, and supported.
• With test automation, you often build an application that distracts from the application

you wanted to test.
• Automated test scripts require maintenance, and overlooking maintenance may render

the scripts unmanageable.

There are many benefits to the automation of certain tests: however, the key is finding the
balance in what is most appropriate for automation. Sometimes Automation in Testing is even
more logical and even appropriate than test automation itself. Test automation is a vast topic
and if you are interested there are further full courses on this topic including certain tools like
Selenium.

Test Tooling

There are a lot of tools available that can be of great support in different parts of the testing
process or various parts of the SDLC. When capturing test cases and defects, and also for
configuration management, suitable tools can be very beneficial. For performance testing, it
can even be debated that tooling is a necessity. Please consider that although tools offer
incredible solutions, they often service a wide spectrum of tasks of the SDLC, so they may not
offer the exact functionality to suit your needs.

If you are going to use tools, do a pilot and a good risk analysis of the tool, and carefully
consider the (license) costs. Tools are not always what they seem and the costs are not always
clearly specified. There are also risks associated with open-source tools, which may not have a

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 21

dedicated support team. Try to avoid creating extra extensive projects simply to satify the
implementation of tools.

Coming back to the idea of “testing is logical thinking” follows the concepts of test automation
and test tooling, where appropriate actions must be taken prior to implementation to make
them successful. As the ultimate goal of every project is quality software, it is important to
maintain focus on this goal and begin to focus more in the implementation of extra (potentially
unnecessary) tools and automation.

Definitions

Action The event that is taking place.

Automation in testing Automating steps of the test or SDLC process.

Condition A state that may or may not be met.

Decision The outcome of a condition.

Test automation The use of software to execute or support testing activities.

Test tooling Software or hardware that supports one or more testing
activities.

Regression testing Re-testing pre-existing functionality to determine if it
functions as it did before a given change.

Requirement Description of what is necessary.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 22

Practice 3: Testing Everything is Impossible

LO12 Understand the practice that testing everything is impossible. (K2)

LO13 Understand the importance of having a test strategy (K2)

LO14 Apply risk analysis in your testing (K3)

LO15 Understand what Pareto’s analysis involves (K2)

LO16 Understand how capturing the cause of incidents can help you improve your
SDLC. (K2)

In the software and applications that are built, there are countless choices and possibilities. In
addition, you can view applications on various devices. For example, even a relatively simple
application programming interface (API) quickly has several dozen options for entering data. It
is impossible to run all potential test cases, so you will have to make choices and differentiate
between them. These decisions may seem difficult at first, but some tricks will help.

Let us consider that we are changing the functionality of a phone number field. On a given
website, the collection of a phone number via a phone number field is an integral part of the
customer journey, used to verify customer identity when placing an order in the webshop.
Guidelines for the correct collection of phone numbers in a phone number field must be
considered, for the functionality of customer identity validation to be possible. This does not
always happen correctly—not by users who enter the phone number by hand, nor by
application developers who program the fields. Consider the following telephone number
formats as examples:

Country Notation examples

Netherlands +31 059 660 0233 00(31)059 660 0233

 +(31) 059 660 0233 00(31)59 660 0233

 +31 59 660 0233 00 31 059 660 0233

 +31 (0)59 660 0233 00 31 59 660 0233

United States +(1)(425) 555-0100 +14255550100

United Kingdom +(44)(20) 1234 5678 +442912345678

UK mobile prefix +(44) 07412 123 456

China +(86)(10) 1234 5678 +861012345678

Singapore +(65) 1234 5678 +6512345678

Table: Telephone Number Formats

In this example, an API could be addressed in several ways, allowing many different SOAP
(Simple Object Access Protocol) messages and many different REST (REpresentational State
Transfer) messages to distinguish between landline phone numbers and mobile phone
numbers.

Depending on the SOAP or REST message (which have very different functionalities), there were
previously two or four phone number fields in these types of messages. The field for mobile
phone numbers always had to start with a mobile prefix. There was also a strict requirement in

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 23

the mobile phone number field: a maximum of 10 positions, always starting with a “+”-sign
followed by a two-digit country code, which in this case also had to have the fixed value of the
country. All those requirements have now been abandoned, and the field is now allowed a
maximum of 20 positions. The country code and mobile prefix requirements were also
abandoned, which means that you are now allowed to enter a landline number in the former
field and vice versa. If you look at the way you could write down a telephone number you arrive
at an infinite number of situations.

Note here that what is shown above table (Examples test cases phone numbers) is only part of
the set of possible landline number notations, and mobile is still largely out of the equation. A
developer can solve this fairly easily by building a check in the field that excludes all special
characters and adds a “+”-sign automatically. However, as a tester, you have to put quite a lot
of effort into checking all the valid input. You would have to test different inputs in all the
different fields as well since you cannot assume that all fields indeed work with the same
mechanism. As a developer, you can validate this in the code, but from a testing perspective,
the code is a black box. In the end, this can result in tens of thousands of test situations.

It is impossible to test all those (functional) situations, as this will generally take too long or
simply cost too much. You will have to make choices about what is required to test. It should be
clear what the test object (phone number field) technically consists of, as this will help to gain a
clear picture of what needs to be tested, which should be documented in a test strategy.

What is a Test Strategy?

A test strategy could be considered the overall tactical guidelines, which should explain all the
ins and outs surrounding everything that needs to be tested throughout the SDLC. An important
aspect to remember when creating a test strategy is to make sure that it provides helpful
insights into the test object.

Creating a Test Strategy: Gathering Information

Useful information when creating a test strategy (and deciding on test objectives):

• Requirements: to serve as a test basis for our tests, for example, (high-level) designs,
epics, user stories, use cases, technical documentation, user manuals… etc.

• Risks: to have a stronger understanding of where potential weaknesses of the system
could exist. These can be sourced from existing risk assessments.

• Quality attributes: to better pinpoint the areas that may require extra focus, for
example, if financial and personal information of customers is being processed
(Security), many users using the system at one time purchasing tickets (Performance),
etc.

• Existing high-level test cases: to serve as examples, these can be taken from an existing
regression set.

• Incident reports (service desk tickets): to depict common problems in the process or
system that should be considered.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 24

Creating a Test Strategy: Sketch the System

It can be useful to include (or draw) a sketch that describes how the test object works (including
the parts that exist and their surroundings). Including a sketch of the system can help to clarify
which parts of the system are new, and which parts already exist. It can also be beneficial to
color-code the sketch as seen here in this example:

This sketch can be used for assigning test levels and test types, which we will discuss in
“Practice 6: “Start small and gradually expand your testing scope”.

Once we have a sketch that explains how the system works and have gained more insight into
the application itself, it could be beneficial to deepen our analysis of the risks to sharpen the
focus of our test strategy accordingly.

Developing a Basic Test Strategy through Risk Analysis

When deciding what to test, we have to develop a basic risk-based test strategy. There are
several ways to create this type of strategy, which can vary in length and extensiveness. We will
elaborate on some of the more basic approaches that help you construct your risk-based test
strategy.

To be able to create a risk-based test strategy, it is important for us to first define what we see
as a risk. According to TMap [XII], a risk is composed of the two elements “probability of
failure” and “damage”. The probability of failure consists of the frequency at which the process
is being used and the complexity of the process itself. Consider the following formula:

Risk = Probability of failure (Frequency + Complexity) * Damage

Let us look at how we can best identify risks through risk assessment.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 25

Risk Assessment to Construct a Test Strategy

Risk assessment [XIX] is a basic process that consists of three required steps to construct a basic
risk-based test strategy: identification, analysis, and mitigation. A good source for identifying
risks is the client (the application owner). In being the main stakeholder, the client usually
understands the business for which we are building (or changing) a system the best. Therefore
the client should be aware of the risks and particularities of the given business and can help
decide what the most important risks are. Throughout the risk assessment process, it is also
important to include other stakeholders from the client side, for example, system
administrators, developers, and key-users. These other perspectives can drastically improve the
validity of the risk analysis as a whole. They tend to have relevant insights for maintaining,
using, and developing the functionality allowing them to elaborate on the frequency of use,
complexity, or common issues with the functionality. Once risks are analyzed, we can start to
focus on the mitigation of risks. Testing in itself is a risk mitigation measure. There are further
measures to mitigate the risks, for example, the implementation of monitoring after
deployment to the production environment.

Using the previous example of changing the functionality of a phone number field, our client
might be able to confirm that 90% of their incoming orders are from Europe. Through this
valuable information, we know that good working functionality is very important for European
telephone numbers. Therefore, we can use this information to divide our functionality and thus
our risks. Let us consider the risks that we have now identified:

Nr. Risk

1. Telephone number functionality within Europe is not working.

2. Telephone number functionality outside Europe is not working.

The testing of all phone number formats from each country in Europe is already a lot of ground
to cover, so it would be beneficial to narrow the scope even further. By asking more specific
questions to the client about the most important markets within Europe, we can discover which
telephone number formats require the most testing. For example, if our client says 70% of the
revenue comes from France, we can create further subdivisions of the risk:

Nr. Risk

1. The telephone number functionality from France is not working.

2. The telephone number functionality from other countries in Europe is not working.

3. The telephone number functionality outside Europe is not working.

To keep our example simple we will stop at these identified (in reality there could be many
more).

Now we must take these identified risks and properly analyze them. Risk analysis involves
learning about the probability of failure and damage.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 26

The probability of failure exists out of the factors of frequency and complexity. With frequency,
we refer to the interval in which the program (or process) is exercised. When determining the
frequency of use, it is a good rule of thumb to obtain the usage figures of the specific
functionality from the application in the production environment. If this data is available it will
provide factual insight into the usage of different functionality. Often those figures can be
obtained by looking at logging or business intelligence reports for the mentioned functionality
in production. By adding this data, you gain a more factual understanding of the frequency with
that a particular functionality is used.

With complexity, we are referring to the difficulty to exercise a certain program (or process), or
the complexity of the program itself. If we combine the results of frequency and complexity, we
will arrive at a final score for the probability of failure. It is important to remember that risk
analysis is always a subjective way of estimating something, which is why we should involve the
client as much as possible. This subjectivity is required because we are trying to put a value on
the priority that should be taken for the given risks.

In risk analysis, it is common practice to use a three-point scale with the values “high” (H),
“medium” (M), and “low” (L) for all components. It is important to note that everything cannot
be listed as “high”, as everything is not equally important. Consider the following risk matrix for
our telephone field functionality example:

Risk Matrix: Telephone Field Functionality

In this risk matrix, the bottom portion “Process”, “System”, and “Damage” refer to our
subdivided risks. “France” is listed under Damage as “H”, because 70% of the orders come from
here. Through mathematical deduction, if 10% of the orders were from “Outside Europe”, we
could estimate that 20% of orders come from the rest of Europe (“Other Europe”). Hence,
“Other Europe” is listed under “Damage” as “M” with 20%, and “Outside Europe” is listed under
“Damage” as “L” with 10%. While discussing the process with the stakeholders we understood
that the “Frequency” is “H” because the field is used for every order to validate the customer

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 27

identity. As the changing of a telephone number field is a relatively common and straight-
forward procedure, one could (remembering that it is subjective) consider that the
“Complexity” is “M”. The “Total” estimate for the probability of failure for this risk is “M”.
When looking at the bottom righthand corner of the risk matrix, the “A”, “B” and “C” refers to
the level of importance of the functionality when mitigating risk. “A” refers to the risks that
should receive the most coverage to mitigate the risk that would damage the company the
most, “C” refers to the risks that require the least coverage (as the overall risk to the company
is lower), and “B” is used for the risks that are in between.

Test Objectives

Test objectives, often called “test goals”, could be a given functionality, part of a software
system, or even a quality attribute that should receive special attention during testing;
therefore, there is no exact science or rule for deducting them.

As we have seen in our telephone field functionality example, during risk analysis we can see
that the division of the risk into different parts gave us some valuable viewpoints on the
functionality. These are “Orders from France”, “Orders from other parts of Europe”, and
“Orders from outside Europe”. Here we have listed only these, but considering a webshop
where you can order items, it is clear that we could name some other parts of the webshop as
potential (even valuable) test objectives as well. Some examples could be: “the user-
friendliness of the interface”, “the shopping cart”, “the checkout”, “the payment options”, “the
search engine”, “the performance”, “the API for external vendors”, “the API documentation”.
These are all examples that could become important if you were to dive into this example more
closely.

The Risk-based Test Strategy

Once we know where the various levels of coverage are required, we can split up the system
into different areas of focus (test objectives) and use them to create a test strategy. Creating a
test strategy is about creating a structured approach to your testing through the use of
different test techniques that can apply different levels of coverage to the various test
objectives.

In our telephone field functionality example, we have limited our test objectives to keep the
example as simple as possible, but if creating a real test strategy for this example, we would
have to consider that there could be much more to take into account.

While creating your test strategy and for example looking at incident reports, if it becomes
apparent that the list of test objectives is very extensive, or it becomes very challenging or
seemingly impossible to include them in the test strategy, “Pareto’s analysis” is an example of a
method that could be helpful.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 28

Pareto’s Analysis (Example Risk Assessment Method)

Pareto’s analysis can make the assessment of risk more efficient [VI]. Pareto’s analysis is based
on the idea that 80% of the benefits of a project can be achieved by doing 20% of the work.
Conversely, 80% of the defects can be related to 20% of the causes.

Steps when implementing Pareto's analysis:

1. Identify and describe problems that have occurred
2. Identify the root cause of each problem
3. Assign a relative score to each problem
4. Group similar causes and add up the score for those groups
5. Having identified the most common types of problems, take targeted action on

them

A Pareto's analysis will lead to this type of line diagram:

When looking at the example above “Pareto’s Analysis”, we see with this method, the
consideration of testing everything is impossible becomes visually clear. It’s important to
consider “when the software is fit for its purpose”.

Root Cause Analysis

Root cause analysis is the identification of the initial cause of defects, incidents, or problems. By
recording the root causes and reviewing them periodically, you can take a look at the types of
errors that occur most often and how you could avoid them in the future, which is a powerful

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 29

tool that can greatly improve your software development process. Applying Pareto’s Analysis to
the root causes that are grouped, could be beneficial when performing root cause analysis as it
helps to solve 80% of the common issues in generally 20% of the effort.

Below is an overview of common root causes that could be considered when applying root
cause analysis:

Regardless of how you (or your team) decide to develop your risk analysis and test strategy, it is
most important to remember that testing everything is impossible. This is why we need to be
sure that we are focussing most of our testing efforts on the most important and valuable parts
of our software.

Definitions

Complexity The degree to which a component or system has a design
and/or internal structure that is difficult to understand,
maintain and verify [V].

Damage The adverse consequence of an event.

Failure Probability The statistical likelihood of something going wrong.

Frequency How often something happens or occurs within a certain
period of time.

Risk A factor that could result in future negative consequences.

Risk Assessment The process of risk identification, analysis, and mitigation.

Risk Matrix The graphical way to evaluate the potential risks that is
used to decide on the required level of coverage.

Root Cause Analysis An analysis technique aimed at identifying the initial cause
of errors (defects).

Test Basis The foundation on which tests are based, including

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 30

documentation, an existing system, requirements, or the
knowledge of a person who knows how it works.

Test Object The product to be tested.

Test Objective(s) The part(s) of the product to be tested.

Test Strategy The overall tactical guidelines that explains all the ins and
outs of everything that needs to be tested throughout the
SDLC.

Practice 4: Be Specific

LO17 Apply the practice of being specific. (K3)

When designing test cases, requirements, and functional designs, it is very important to be
precise. Where programming could be considered an exact science (breaking down everything
into 1s and 0s), this is not always the case for testing, as we will see in the following chapters. It
is important to invest this time, to have a strong basis for development and testing going
forward.

Being specific ensures that you (as a tester) make insightful choices. If done correctly, the
practice of “being specific” also ensures that you are describing the correct things accurately
with the appropriate amount of detail required. If the requirements you received were not
specific, you can make them specific by translating them into test cases. If there are any
questions or ambiguities that are raised while analyzing the requirements and translating them
into test cases, should be clarified with the author of the given requirements. This kind of
communication can lead to a better understanding and thereby more accurate implementation
of requirements.

One trick you can use when being specific is SMART, which stands for “specific,” “measurable,”
“acceptable,” “realistic,” and “time-bound”. The table in the defintions section of this chapter
explains the components of SMART [VII].

In some cases, it might be difficult or nearly impossible to further clarify “vague” requirements
or test cases. If this is the case, one thing you can do is describe the risk of the requirement that
you cannot properly test or the test case that you cannot properly describe. In other words, you
should specify exactly what you cannot test or measure because your inability to do so
increases the risk. For example, if you are required to determine that a screen background
remains “purple” when a given action occurs and you have not been provided with the specific
RGB color parameters, how can you determine that the screen background is in the correct
shade of purple? If you were to accept all shades of purple (because you did not request the
exact color parameters from the client), you may indeed fulfill the initial requirement, but have

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 31

missed the point of it, as you would accept the entire understood spectrum of purple colors,
and the particular purple is probably important to the corporate identity of the client.

Example Business Requirement:

Requirement:
“Workflows will be created for the various letters and emails. These workflows can be executed
based on selections made using the advanced search.”

There is a lot of information that is unclear in the above requirement. The “vague” information
could be clarified with the following questions (among potential others):

• How many workflows are created?

• How many letters are there?

• How many emails are there?

• How many selections are there?

• What is a workflow?

• Which workflows lead to which letters?

• Which workflows lead to which emails?

• Do all workflows lead only to letters?

• Do all workflows lead only to emails?

• Where can I start the workflows?

• How does starting the workflows work?

• What is the relationship between selections and advanced search?

By asking these questions, you will gain a much better understanding of what the requirement
is asking, so you can better understand what you should test. This would help the given
requirement meet the SMART standards as explained above.

The following text is an improvement of this particular requirement:

• A number of workflows can be created in the application. A workflow is part of the
standard package and can be configured for specific use. There are three workflows:
workflow A, workflow B, and workflow C. Workflow A is for the acceptance letter or
email (if the email is known), workflow B is for the rejection letter, and workflow C is for
sending the invoice.

• These workflows can be executed by the “Customer Contact Handler” role from screen
“CER012”. This screen shows all workflows. By pressing the button “Start workflow” the
workflow is activated. There will be three buttons, 1 button for each workflow. The
workflows may be active for a maximum of one minute.

• By pressing the button "Start workflows" a pre-defined selection in the advanced search
is activated. These selections are as follows: for workflow A: NAME DATA or EMAIL and
NAME, LETTER DATE18, SIGNATURE4; for workflow B: NAME DATA, LETTER DATE14,
SIGNATURE2; for workflow C: NAME DATA, LETTER DATE11, FINANCIAL DATA,
SIGNATURE1.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 32

• If a workflow cannot be executed or if a workflow is active for more than one minute, an
error message with the following text: “workflow X could not be executed” should be
shown to the user who started the workflow. At the position of the X, the name of the
workflow in question should be shown.

The above text may take more time to generate, but provides specific information that is much
easier to accurately understand and develop. This will also make it much easier to know what
should be tested. This will most likely save project development time overall, as the product is
more likely to fit the precise demands of the client.

Being Specific: While Reporting a Defect

When writing a defect report, it is important to be as specific as possible so the defects can be
reproduced or retested by other people.

A well-specified defect report should contain:

• A clear title
• A SMART description of the steps to reproduce the defect
• Expected result
• Actual generated result
• Proof of the defect: logging, screenshots, etc.
• Relevant information: a unique number that identifies the associated test case(s), the

name of the screen, traceability (or reference) to the given requirement, which
environment the defect occurs in, the version number of the software used.

• Severity of defect: “Blocking”, “Severe”, “Not Severe”, “Cosmetic”
• Priority of the defect: “Low”, “Medium”, “High”

As multiple parties are usually involved in the creation and testing of new software throughout
the SDLC, it is important to maintain strong communication standards, such as being specific.
This helps to allow team members to save valuable time (and resources), and accomplish tasks
quicker all the while maintaining motivation throughout the project.

Definitions

Specific Be as detailed as possible and avoid generalities. Avoid reference
words like this, these, that, and those because if a text is copied or
modified, the meaning may not be clear enough. Always formulate
positively and singularly. Consider formulating error paths.

Measurable The requirement or test case must be measurable. Avoid vague clauses
like “fast,” “instant” “many” “easy” or “similar”. Instead, link a
measurable unit to each case so you can determine if it is correct. For
example, “the data in screen CER012 must be fully loaded within 1
second after opening the screen or requesting a record” or “the

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 33

process should be able to compute 100,000 transactions daily basis
between the hours of 23:00 and 5:00.”

Acceptable A requirement or test case must always be accepted by the client. Also,
requirements must be ethically and morally acceptable and meet legal
requirements and regulations.

Realistic A requirement or test case must always be realistic. In other words,
achievable goals must be formulated for the range of time, finances,
and resources available.

Time-bound Many requirements lack a time indication. By making time parameters
concrete, you can better measure and thus better test whether a
requirement is satisfactory. Include clearly defined units of time such as
days, hours, minutes, seconds, milliseconds, etc.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 34

Practice 5: Test as Early as Possible

LO18 Understand the practice of testing as early as possible. (K2)

LO19 Types of environment including testing (K2)

LO20 Understand the importance of a good testing environment (K2)

LO21 Understand the importance of test data (K2)

The practice of testing as early as possible allows for significant time and cost benefits. This
practice has its roots in research done by Barry Boehm in 1977 [IX]. Boehm’s study shows that
the cost of a defect increases exponentially the later the defect is found. Ergo, the earlier
defects are found, the cheaper they are to fix. Consider the following graph which shows the
costs of correcting defects in different software development lifecycle (SDLC) phases:

Figure: Cost of Correcting Defects

As we can see above, the correction costs grow exponentially throughout the SDLC. Therefore,
if a defect is found and corrected in the early phases of the SDLC, one can imagine the positive
consequences it can have on the overall time and budget of the project.

Knowing this, efforts to prevent defects should be started as early as possible. Here are some
examples of how you can implement this practise of testing as early as possible:

• If you (or your team) can not test dynamically, then you can try it statically by reviewing
(by yourself or with several people in a review meeting), in a walkthrough, or with an
early demo of your product.

• A system test in the development environment is always cheaper and faster than testing
something at a later stage, for example in an acceptance environment. It is in your best
interest to test dynamically as soon as you can, for example, to avoid having the defects
even deployed to the acceptance environment in the first place.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 35

• Do not postpone any testing activities with the intention “we will come back to test this
later”. Instead, by testing early, even if it means you may have to repeat some of of the
tests later, this can avoid the building upon defective code which would could remain
undetected for a longer period of time.

It may be tempting and even at time “more fun” to start developing early; however,
remembering to review requirements can be incredibly cost-effective.

Another important point to consider, which is often underestimated throughout the SDLC, is
making sure that the test environment is well-functioning and well-managed.

Test Environments

Usually, there are four main types of testing environments (or four main types of environments
in which testing is carried out). The environment that always comes first is the development
environment.

The development environment is the first level and is used by the developers to develop the
software. In the development environment, typically, technical testing like unit testing takes
place. The development environment is usually only available to the developers and often has
little or no integration with external software components or parties.

The second level is usually the test environment. The test environment is intended to be used
for technical testing, for example, system testing and integration testing. Therefore, this
environment needs more external components so integration testing can be executed. This
environment is mainly used by dedicated testers, however, developers and maintainers could
have access as well.

The third level is usually the acceptance environment. The acceptance environment is usually
more extensive than the development and/or test environment, where almost all relevant
components from the landscape are present. The main goal of the acceptance environment is
to have the newly built or changed software accepted, meaning that testing is usually done by
end users. Since it is often the most complete environment before the production stage, some
administrators tend to use it for installation testing and other maintenance-related testing.

The final level is the production environment. Generally, it is not recommended to test in the
production environment as this could impact the real users in real-time, however, there might
be one or two exceptions to this rule. For example, building a completely new system might
require performance testing. The difficulty with performance testing is that you need to have a
technical similarity to production. Technical similarity is necessary because the calculation of
the load tends to be correlated with the quantity/quantities of technical components used in
the environment (hardware, software, switches, CPU, memory). The environment that includes
all of these components in the right proportions is the production environment. The technical
similarity being key in performance is what makes it difficult to achieve this in other

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 36

environments. When it comes to testing in the production environment, it is always important
to be extremely cautious of the risks involved. Whenever possible, it is always recommended to
run any and all tests in the environments before production.

These four environments (Development, Test, Acceptance, and Production) are often referred
to as the DTAP principle. The DTAP principle involved the creation of software and then
ensuring that it is deployed to every environment in order (Development → Test → Acceptance
→ Production), only entering production once it has been in every previous environment. By
following this principle we can be sure that all software versions in the given environments are
the same (except for changes that are in the process of being developed or tested).

Understand the Importance of a Good Testing Environment

One or more properly proportioned and well-managed test environments can greatly increase
the quality of your software by enabling you to test quickly, accurately, and frequently. In good
testing environments, you can eliminate many assumptions that might not otherwise be
encountered until production.

A test environment is important because several practices come together. In the test
environment, requirements, deployed code, test cases, test data, and other necessary software
are merged. If the test environment does not exist, or if parts are missing, the software cannot
be tested and therefore assumptions will have to be made (for example, that some of the
components are working), which is contrary to Practice 1: Make No Assumptions.

To test as early as possible, you want to make sure that your test environment is as complete as
possible to avoid late-stage testing in a higher-level environment. Higher-level environments
are more extensive in the SDLC. Therefore, these higher-level environments tend to have more
dependencies, which can severely limit their availability (time-wise) for testing at a later stage.
The limited availability of higher-level environments can result from many things, such as
internal project dependencies or usage by other projects. Even the fact that the time schedule
becomes tighter closer to the release could be an important factor.

There are sometimes understandable financial reasons for not creating a separate test
environment. However, it is important to keep in mind that all defects that are not found or are
found later also cost money. Some of these costs might not be immediately apparent (relating
to extra fixes and rollouts), but may come much later when the software is in production and
reputations, sales, and overall quality has been damaged. When the risks of a missing test
environment are made clear, many clients are willing to invest more, even without a completely
sound business case. It is highly recommended to make the risks as concrete as possible and
describe this urgency well.

Using Stubs and Drivers

To solve the problem of not having all components available in lower-level environments we
could utilize stubs and drivers to simulate those components. Simulation of the missing system

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 37

parts enables you to test more extensively at an early stage and will therefore enable you to
find defects earlier in the SDLC. Stubs and drivers are, depending on the situation and
technology, relatively simple to create and can therefore be viable to the business case when
assessing the savings on the correction costs of defects at a later stage.

Key considerations about test environments:

• The omission of a test environment will always lead to a risk. Risks can also be
generated even if only a portion of the test environment is omitted.

• Risks must be made clear to the person who is ultimately responsible (the client).

• Test environments should resemble the production environment as accurately as
possible.

• Remember to utilize stubs and drivers in place of missing components.

• Respect the DTAP principle, and enforce it (technically) whenever possible.

• Establish configuration management and maintain the environments appropriately. It is
also important to maintain configuration management of relevant components.

• Wherever possible, always automate the transfer of software from one environment to
another. This can prevent unnecessary manual actions which can harm the quality and
predictability of your deployments.

• It is beneficial to automate the creation of environments. In doing so, you only need to
manage infrastructure components once, which allows for the easy creation of new
environments-specific changes or releases that can be easily discarded. This is especially
recommended when working with cloud environments.

When it comes to the test environments, there are endless problems and situations to be
encountered. We can imagine a test environment as a laboratory setup: a substance (Software)
is being made in a very precise process (SDLC). You need to have the right amount of original
substances that need to be used correctly: they need to be heated at exactly the right
temperature, vaporized, etc. In the process, it is not possible to take some of the original
substance out because it would affect the final product.

Test Data

The quality of the test data available largely determines the quality of your testing, so having
good-quality test data is essential. Whenever possible it is beneficial to use production data.
However, if dealing with production data, remember to consider local legislation, such as GDPR
adherence in Europe.

From a testing perspective, testing with production data is beneficial because it provides many
variations of functional test cases. Using a wider variety of data can be a thorough and efficient
way to test the software at hand. Whether production data is possible or not, it is important to
make sure that all the functional variants are present in the test data, for example, if you are
testing the software of a car insurance policy, data with all the variations in address, type of car,
claim-free years, etc. is essential.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 38

To be effective and efficient, it is important to test as early as possible, so we encounter defects
earlier and avoid carrying them throughout the SDLC and becoming more costly defects later.

Definitions

DTAP Principle DTAP stands for Develop, Test, Accept, Production, a principle in
which the software passes through all of these environments before
being put into use.

Dynamic Testing Testing by executing code (from a component or system) [V].

Review A form of static testing where a (intermediate) product from the SDLC
is assessed by one or more people.

Static Testing Testing a part (of a product or workitem) of the SDLC without
executing code [V].

Stubs and Drivers A temporarily simulated component that is used to test another
software component. A driver is placed before a component and a
stub comes after it.

Test Data The data used for the execution of tests.

Test Environment A validated, usable and stable environment, resembling as much as
possible the final production environment, used to run test cases or
reproduce bugs.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 39

Practice 6: Start Small and Gradually Expand your Testing

Scope

LO22 Understand the practice of starting small and gradually expanding your testing
scope. (K2)

LO23 Recall test levels and test types (K1)

LO24 Understand how test levels and test types apply to a test strategy (K2)

The concept of “starting small and gradually expanding” is also considered a best practice of
project management. This also reigns true when we consider the most advantageous way to
test software. The practice assumes that you have completely checked a small part (unit) of the
software to ensure it is working properly. Units confirmed to be working properly can be
integrated with another unit of the software, provided that the other unit has already been
checked independently, which increases your scope. This has as advantage that defects that
come out of the integration of the two units must result from the integration itself. This
simplifies the investigation when looking for the cause of defects found. This practice enforces
the “Practice 5: Test as early as possible”, as you can test earlier and more completely if you
divide the system in smaller units to test.

In general, there are four test levels:

• Test Level 1 - Unit Testing

• Test Level 2 - Integration Testing

• Test Level 3 - System Testing

• Test Level 4 - Acceptance Testing

Test Level 1 - Unit Testing

The practice of testing unit by unit is called unit testing, and according to international testing
standards (like the ISTQB) is the first test level. It is common practice that unit testing is
performed by developers in the development environment. Unit testing is executed
dynamically and it is done towards the completion of the development of the unit, while the
software is still being developed. The scope and coverage of unit testing are thus always limited
to the unit itself.

Test Level 2 - Integration Testing

The next test level involves the testing of two units together, which is called integration testing.
These tests can only generate defects that have to do with the integration of the two units,
since defects in both units should have been found seperately in the previous unit tests.
Following this process enable error detection to be considerably easier. Note: where we use the
term “unit,” we could also use “component”. As integration testing focuses primarily on the
interaction between two components or systems, the scope should cover all possible
interactions (an situations thereof) between the two units.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 40

Test Level 3 - System Testing

System testing is the test level that is generally recommended to follow after integration
testing. System testing is usually carried out in the test environment and involves the testing of
different integrations together. System testing may sometimes involve a chain of processes,
which is referred to as chain testing. The scope of system testing is aimed towards the flow
and/or consistency of different integrations and units of the system.

Test Level 4 - Acceptance Testing

The next level that is generally recommended is called acceptance testing. Acceptance testing
is usually carried out by users from within the organization the system is developed for. The
scope of acceptance testing is to confirm if the system supports the users and organizational
processes as intended. End-to-End testing (E2E testing) is a form of testing that tests (the main
scenarios of) the flow of a system from the beginning to the end. E2E tests are usually carried
out at the acceptance level of the SDLC where a lot of dependencies exist.

Figure: Test Levels vs. Test Environment

In the figure: Test Levels vs. Test Environment, each box (unit) represents a test. When testing
has been completed on one box, then you merge the tested box with another (tested) box. This
continues following the test levels (1-4) as previously explained that build upon one another.

System Integration Testing

An often-used test level that is in between system and integration testing is called system
integration testing (SIT). Software that requires integration with the software of other teams or

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 41

organizations demand special attention. When software components are developed separately,
chances are higher that misunderstandings or miscommunications can occur. These
communication mishaps can lead to parts of the software being interpreted differently and
harm the overall quality of the software.

End-to-End Testing

We’ve already seen how starting small and gradually expanding your testing scope makes error
detection easier, but the principle of early testing is also applicable here. An E2E test is a late
and therefore relatively expensive form of testing, so this should be executed as smoothly and
efficiently as possible. E2E tests should only find errors that come from the integration of all the
process components. Therefore, it is in your best interest to have the earlier test types fully
executed before you start carrying out E2E testing.

Test Types

Test types are focused on specific testing objectives as well as specific characteristics of a
component or system [V]. They usually depict certain quality characteristics (functionality,
security, performance, usability, etc.), but can also focus on concepts like regression or
changes. Some of these test types will be elaborated on in the following chapter focusing on
quality characteristics.

The various test types can be executed at any of the four test levels, but it is useful to consider
that certain test types are more beneficial in certain environments. Test types are usually
decided on after the risk analysis or the analysis of the test basis when it becomes clear that
certain aspects of the system require special attention.

Implementing Test Levels and Test Types in Test Strategy

When continuing our example from practice 3 and constructing our test strategy we should
analyze the different parts of the system (test objectives), so we can decide which test levels
we would like to apply to each. Considering our previous example sketch, our test objectives
are the various components: “Customers”, “Login”, “Search”, “Webshop”, … etc.

Reminder Sketch from Practice 3: Testing Everything is Impossible

To apply the different test levels and test types to our test objectives, it is beneficial to create a
test strategy table that utilizes the information gained in our risk analysis to determine the
coverage for each test objective for each test level. It is important to consider which test types
are relevant when testing your software at various levels.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 42

For our given example our test strategy could look like this:

Test strategy table Test levels

Test objective/test
type

Static
Testing

Unit test Integration System Acceptance

Orders from France Code
review

High
Coverage

High
Coverage

Medium
Coverage

Include in
all E2E
scenarios

Orders from other
parts of Europe

 Medium
Coverage

Medium
Coverage

Low
Coverage

Test main
Scenarios

Orders from other
parts of the World

 Low
Coverage

Low
Coverage

Low
Coverage

Test some
scenarios

Login

Search

Usability Prototyping Walkthrough Eye
tracking

Test by
user groups

API Documentation Review

Test strategies are a very extensive topic and your knowledge will grow throughout your testing
career. If you remain focused and “start small and gradually expand your testing scope” you will
already be on the right path to creating well-focused and structured test strategies in your
everyday work.

Definitions

Acceptance Test A test level aimed at determining whether the system is
accepted. [V]

Chain Test A type of test that includes multiple systems.

End-to-End test (E2E
Test)

A type of test in which business processes are tested from start to
finish under production-like conditions. [V]

Integration Test A test level that focuses on interactions between components or
systems. [V]

System Test A test level designed to verify that a system as a whole meets the
specified requirements. [V]

Test Level A specific representation of a testing process. [V]

Test Type A collection of testing activities based on specific testing
objectives and focused on specific characteristics of a component
or system, e.g., a performance or security test or a user
acceptance test. [V]

Unit/Component Test A test level that focuses on individual hardware or software
components. [V]

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 43

Practice 7: Documenting your Tests

LO25 Recall a basic testing process (K1)

LO26 Understand the value of documenting your testing. (K2)

The existing recognized test methodologies distinguish several different phases in the testing
process, usually: planning, preparation, specification, execution, and completion.

Generally, 60-70% of the time spent on testing is devoted to the first three processes (planning,
preparation, and specification) [XII]. The execution and completion phases of the tests
themselves often only constitute 20-30% of the time. These percentages indicate that a
considerable amount of time goes into planning, preparation, and specification.

This preparation phase is crucial as it consists of selecting and proposing appropriate tests. This
is where important aspects of the entire testing process are decided, which includes testing the
right things and testing them at the right time.

It is sometimes required to put together a comprehensive plan with a detailed test strategy, in
which agreements and choices are outlined in detail concerning the entire testing project. This
can become quite an extensive activity, with a master test plan and detailed test plans for each
test type, as well as agreements about time, resources, schedules, budget, etc. Extensive plans
can be valuable in certain circumstances, especially in environments like large corporations or
government institutions. Comprehensive planning can also be worthwhile if you have many
different testing parties and you want to agree on which party tests which items to avoid
overlap or duplication of tests, or you want to prevent certain parties from testing a certain
area.

However, please note that such extensive plans should not be made out of habit or because
that is the way of working in a particular organization: this sort of planning should only be done

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 44

when it adds value. It should never be the priority to create an overly extensive master test
plan simply to have it, as it most likely will not be read.

In other circumstances, a less extensive test strategy of only a few pages will suffice. These
briefer outlines should document your thoughts and discussions with co-workers, and they
serve their purpose because they enable you to communicate or refer to it more easily. This
type of documentation also helps to prevent misinterpretations of the agreements.

Hence the practice: “Documenting your testing.” The meaning of this practice is twofold: first,
document your test strategy. Second, document the test cases you are going to test or have
tested. In order to document testing, it helps if you also have documented requirements. This
might be obvious, but it is not always common practice. Documenting requirements is an
excellent quality measure. By documenting requirements, you make the information
transferrable from person to person, you avoid misinterpretation, and you can create a
common understanding of the requirements. The requirements can then be more easily refined
and used as a basis for testing. Therefore, it is always good practice to request that clients
document requirements and to offer your assistance in doing so. This action is a single measure
that can add considerable quality.

A good way to formulate requirements is to turn them into user stories in the format: As <role>
I want <functionality> so that I <add value>. For example:

‘AS an administrator I WANT to be able to add a .PDF file to a website
SO THAT I can show this .PDF file to vistors of the website' [X]

By formulating requirements in this way, the practice of “documenting your tests”, along with
the practice of “being specific”, will allow us to make understandable requirements. These
requirements subsequently provide the guidelines to develop, test, and maintain software.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 45

The amount of detail in which requirements are documented will vary in different organizations
and projects. The amount of detail provided in our requirements will determine how rigorous
and detailed our tests could be, something also to consider when constructing a test strategy
and selecting test techniques to test certain parts of the system.

When documenting tests that have been derived from the test basis, this offers a structured
approach, which can ensure that we do not forget relevant test cases. Documenting exactly
what you have tested makes testing reproducible and repeatable. Replicability is a part of
testing that is very important. Often, someone else (e.g., the developer or the test coordinator)
has to reproduce your test to witness or experience a given defect. By documenting exactly
what you did, you make this easier and faster for them to analyze the system, which can save
time and money.

By documenting what you have tested, you make it easier to repeat those tests yourself.
Remembering what you did is sometimes virtually impossible given the complexity of the
situation or the number of test cases and test rounds you did. Making screen recordings as you
run your tests is also a good way to capture test execution and results, provided that it is a clear
and relevant recording, and that you can easily search for and recover the different test cases
performed.

There is yet another important reason to document your tests. Often, you want to create a
clear script in preparation for testing that will be used during test execution. For example, test
execution can only start when the software is delivered to the test environment. This could be
days or weeks after the creation of the test cases. So, by creating the test script earlier, before
execution, the tests can be run independently by team members (or anyone) other than the
author.

A final reason for documenting is as follows: To have a precise and accure outcome prediction.
We should clearly write our prediction upfront. That way it will not be biased by the actual
outcome of the test. And it would be more likely to notice deviations from the outcome
prediction. By documenting, you are likely more likely to avoid putting the behaviour of the
product during testing into the script. Consider that the behavior of the product during testing
is not necessarily the correct behavior. If the expected behavior is established beforehand, the
chances of including an undesired behavior in the test script are lower, and defects are more
likely to be detected.

For example, think of constructing an item from IKEA. When you carefully follow the
instructions, the right outcome (the correct construction of the item) results. If you just start
putting bits and pieces together without following the instructions, you stand a significant
chance of ending up with some items attached upside down or inside out.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 46

Using Test Techniques

There are various ways of creating test designs and test scripts, called “test techniques.”
Various test techniques apply to different situations, tests, and software components, some of
which are discussed below. Several important things to consider when applying test techniques
are listed below. These apply when using a test technique and creating a test script.

• Apply the test practices.

• Design your test cases before you execute them, rather than doing this at the same
time.

• Use a technique to create a high-level test design.

• From the high-level test design, add more detail when creating the test case(s).

• Linguistically, test cases should be formulated singularly.

• Separate a logical test case from a physical test case.

• Consider initial conditions (pre-conditions).

• Document an output prediction.

• Document the result.

The items listed above will be explained in more detail in each of the sections below, which
focus on various test techniques.

Process Flow Test

LO27 Learn to create a test script(s) by drawing up the process/program. (K3)

The first test technique we are going to discuss is called the “process flow” technique [XI]. This
technique is useful for testing flows in code, applications, and processes or chains of processes.

Process flow tests allow you to outline the structure of a program or process, including decision
moments as well as alternative and error paths. The technique provides insight into the paths
within a process or program. This allows you to check whether the main flow of the most
important decisions are working correctly as well as the most important error paths. It might be
worth it to mention (though it might seem needless) that such a process diagram can also be
drawn based on the program code.

Example Process Flow:

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 47

Steps to Construct a Process Flow Diagram

Start by analyzing the information, process, or program code. In doing so, you can draw a
diagram similar to the example process flow. In the process of diagramming, you might
encounter difficulties in connecting the lines, which could mean you have encountered a
defect. While putting together the diagram, try to be as extensive as possible. In the sections
where information is missing, or where you cannot tie the lines together, gather information by
asking team members and/or the client about the intended behavior of the missing part or
path.

In the process flow diagram, a rectangle signifies an action and a diamond signifies a decision. A
line with an arrow is drawn from the action and decision to the follow-up action and decision.
By drawing it this way, it is easy to determine what paths exist in the process or code and
whether you can test them.

For this example, imagine a mobile app, and that you want to test the login process.
Schematically, it is represented in this previous process flow diagram.

Drawing a diagram this way enables you to clarify which flows exist and which ones you can
test. The next step, labeled “Description” in this example, includes a written version in
understandable language. This makes the process even clearer and should make it possible for
anyone on the team to execute the test as well.

Creating the Test Script

When creating the test script, the first step is to write out all the high-level steps of the
different flows deduced from the diagram.

Test case Schema Description

Description:
1. Open mobile app & show home screen.
2. Is the customer an existing customer.
3. Yes, show login screen.
4. No, show account creation screen.
5. Login succesfull? Yes -> 6 No -> back to 1.
6. Show continuation screen.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 48

1. 1-2-3-5-6 Successful login attempt; existing customer.

2. 1-2-3-5-1 Unsuccessful login attempt; existing customer.

3. 1-2-4-5-6 Successful login attempt; new customer.

4. 1-2-4-5-1 Unsuccessful login attempt; new customer.

Once these steps have been outlined, you have created high-level test cases. These test cases
are called “logical test cases,” since they solely describe the logic used to construct them. After
this has been completed, you can then create the detailed steps and write down the detailed
test cases.

Test Case 1, Successful login attempt; existing customer

Step 1. Open the screen with an existing customer. (pre-condition)

Step 2. Show login screen. (pre-condition)

Step 3. Log in with valid credentials. (pre-condition)

Test: that the follow-up screen is displayed (outcome prediction).

(Expected) Result Ok/Not Ok

With this amount of detail, it is easy to see the different parts of the test case. These different
parts are initial conditions or “pre-conditions.” In this test case, the pre-conditions are steps 1-
3: they describe the conditions to fulfill that enable the execution the test case. The next part is
the test itself, with the outcome prediction. The final part of the test case is the (expected)
result, in which the conclusion of the outcome prediction would be true (Ok) or false (Not Ok).
We have now explained a detailed test case. This test case, like its higher-level version, is still
called a logical test case. To be thorough, the other detailed test cases are as follows:

Test Case 2, Unsuccessful login attempt; existing customer

Step 1. Open the screen with an existing customer.

Step 2. Show login screen.

Step 3. Log in with invalid credentials.

Test: you are returned to the home screen (outcome prediction).

(Expected) Result Ok/Not Ok

Test Case 3, Unsuccessful login attempt; new customer

Step 1. Open the new client screen.

Step 2. Show login screen.

Step 3. Log in with invalid credentials.

Test: you are indeed returned to the home screen (outcome prediction).

(Expected) Result Ok/Not Ok

Test Case 4, Successful login attempt; new customer

Step 1. Open the new client screen.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 49

Step 2. Show login screen.

Step 3. Log in with valid credentials.

Test: that the follow-up screen is displayed (outcome prediction).

(Expected) Result Ok/Not Ok

Once the test cases have been described, they can be executed, but in order to do this, you
have to search in the database for the right data to implement. In the example case, this is the
customer data. This can be done with existing data, or data manipulated to fulfill the pre-
conditions of the test cases. Test cases in which the right data has been implemented are called
“physical test cases”.

Semantic Test Technique

LO28 Learn to create a test script using the semantic test. (K3)

Another test technique you can use to create test cases is the semantic test technique [XII].
This technique uses the words IF, THEN, and ELSE to describe test cases. Semantic tests are
useful for testing simple and medium complex functionality. Semantic tests also lend
themselves well to testing single requirements as well as requirements that are co-dependent
of other requirements, e.g., different control requirements on screen like “customer’s age
needs to be < 16” or “customer’s credit check needs to give a positive result”.

To give an example of usage, we will use the same sample description of functionality as we
used for the process flow technique:

Description:

1. Open the mobile app and show the home screen.
2. Is the customer an existing customer?
3. Yes -> show login screen.
4. No -> show account creation screen.
5. Login successful? Yes -> 6; No -> back to 1.
6. Show the continuation screen.

Using this example, you would arrive at the following semantic test script:

1. IF The app is opened
THEN Show the home screen
ELSE No action

2. IF The customer is an existing customer
THEN Show the login screen
ELSE Show account creation screen.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 50

3. IF The customer is an existing customer with a successful
login
THEN Show the continuation screen.
ELSE Show home screen.

With co-dependency, it would then become:

IF The app is opened
THEN Show the home screen
 IF The customer is an existing customer
 THEN Show the login screen
 IF There is a successful login attempt
 THEN Show the continuation screen
 ELSE Show home screen
 ELSE Show account creation screen
ELSE No action

Note the alignment here: IF, THEN, and ELSE belong together. This is called a nested statement
and is also used in program code. Furthermore, note that an IF always has a THEN and an ELSE.
In this manner, it is possible to describe all possibilities of the functionality.

The IF describes a pre-condition: a condition that a test case must satisfy in order to be
executed. The THEN describes the action that should occur when the condition is met. Finally,
the ELSE describes what should happen if the condition is not met, and refers to either an error
path or a subsequent functionality. Now that we have described the test cases as high-level test
cases, we can continue as we did with the process flow technique, by going into further detail:

Nr. High-Level test case Nr. Detailed test case

1. IF The app is opened
THEN Show the home
screen
ELSE No action

1. Verify that the home screen is displayed.

2. Check that no screen is displayed when no
action is taken.

2. IF The customer is an
existing customer
THEN Show the login screen
ELSE Show account creation
screen.

3. Verify that the login screen is displayed
with an existing customer.

4. Make sure the account creation screen is
displayed with a new customer.

3. IF The customer is an
existing customer with a
successful login
THEN Show the
continuation screen.

5. Verify that upon a successful login
attempt, the continuation screen is
displayed.

6. Check that upon unsuccessful login, the
home screen is displayed.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 51

ELSE Show home screen.

Next, we can create the most detailed step(s) of the test case:

Detailed Test Case 1, Verify that the home screen is displayed.

Step 1. Open the app

Step 2. Show the home screen.

Check: that the home screen is displayed (output prediction).

Result Ok/Not Ok

Detailed Test Case 2, Check that no screen is displayed when no action is taken.

Step 1. Install the app, but do not open the app.

Check: that nothing is opened (output prediction).

Result Ok/Not Ok

The second test case may seem redundant—this may be true in this example, but it often
makes sense to explicitly check for no action.

Decision Tables

LO29 Learn to test functionality using a decision table (K3)

Decision tables [VIII] can be used to test the structure and logic of a program or process. In
decision tables, you differentiate between conditions that are or are not met, and you describe
the actions resulting from those decisions. In this manner, you can properly check for full
functionality. Decision tables are a complex technique that allows thorough testing: they are
often used for testing complicated processes or applied in high-risk environments where it is
important to distinguish all possible outcomes.

Decision tables are constructed by writing out all the conditions. When formulating conditions
in a decision table, it is important to keep a few things in mind. Conditions should be
formulated in simple language and singular terms. Also, they should be formulated in such a
way that the outcome of the question will be easily understandable if answered with ‘Yes’ or
‘No’. This way, the table will be easy to understand and to replicate.

Example entry to an amusement park ride:
You have the following requirement:
If age > 15 or age = 15 and height > 135, then you have access to the attraction. This leads to
the decision table below.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 52

The next step is to fill in all the actions resulting from the conditions. Once the actions are
listed, you can fill in the decisions with ‘Y’ (Yes) and ‘N’ (No)”. Excel is a good tool to help with
this. In a decision table, the conditions are boolean (Y/N). The number of possible “different
decisions” is therefore 2 to the power of the number of conditions. So with 3 conditions in our
table, it will be 2 to the power of 3, 23 = 2 x 2 x 2 = 8. At 4 conditions, 24 = 2 x 2 x 2 x 2 = 16.

Once the columns have been determined, you can fill the ‘Y’ and ‘N’ in the columns. An easy
way to do this is to fill the first half of the first condition with ‘Y’ and the second half with ‘N’. In
our example, we have 3 conditions, resulting in 8 columns (2 x 2 x 2) where columns 1-4 would
be ‘Y’ and columns 5-8 ‘N’

Once you have filled the first condition (row), you can move on to the next condition. A good
rule to follow is to copy the decisions of the previous condition into the following row and
change the second half of the consecutive ‘Y’ portions to ‘N’s and the first half of the
consecutive ‘N’ portions to ‘Y’s as shown here:

You can move on to the next conditions until you reach the last condition, as seen here:

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 53

Then, you can match the outcome of the different conditions to an action. In our example, a
person must be either 15 years old or older and taller than 135cm to be granted access to the
attraction. Column 1 describes a person who is either 15 years old or younger (cannot be both,
so assume age = 15 years is correct) and is taller than 135cm. Therefore, access should be
granted to the individual described in column 1. Write ‘X’ in the field that indicates the correct
action.

Next, you can fill in the second column. Since the “Height > 135” requirement is an ‘N,’ access
will not be granted to an individual who meets these criteria. All of the other actions in the
table should be filled out until there is an action for each column. You now have the 8 test cases
to test the functionality thoroughly as seen here:

Boundary Value Analysis

LO30 Learn to deepen your testing by using boundary value analysis. (K3)

Boundary value analysis [XIV & XV] is a method of covering the boundaries of values in input
fields, conditions, APIs, batch processes, and plugins in your tests. In this method, you look
specifically for the boundary to determine distinctions in the difference in functionality used in
the software. Carrying out boundary value analysis enables you to properly check for
completeness and correctly working functionality.

To illustrate boundary value analysis, let’s imagine using an on-demand service with age-
appropriate distinction for violent content. One of the rules is that a person must be 18 years or
older to view certain content. This could be checked by testing with an age randomly chosen

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 54

above 18, say 23, but perhaps a better alternative would be to check this with an age of 17 (no
access), 18 (access), and 19 (access). You would use these values specifically because many
errors arise from wrong values for the boundaries: consider the usage of the symbols ‘<’, ‘>’, ‘=’,
‘<=’, and ‘>=’, in programming code. A good way to apply boundary value analysis is to make 3
test cases per limit: a test case on the boundary, a test case just left (most likely less than) of
the boundary, and a test case just right (most likely greater than) of the boundary.

Let’s look at another example of senior citizens receiving a discount on public transport to
illustrate how boundary value analysis can be applied. Take the following requirement:
‘Citizens of 65 years of age and older receive 20% off their public transport ticket fee.’ When we
apply boundary value analysis to this, it will lead to 3 test cases per boundary, yielding the
following test cases:

• 64, 65, 66 (invalid, valid, valid)

Equivalence Partitioning

LO31 Learn to deepen your testing by using equivalence partitioning. (K3)

Equivalence partitioning, or equivalence classes [XIII & XIV], is a test technique that
distinguishes different classes of (input) values or other requirements for an application. Values
from within the same class(es) often lead to the same kind of processing. We distinguish
between “valid” and “invalid” equivalence classes. Input values from valid equivalence classes
are processed correctly and input values from invalid equivalence classes usually result in an
error message. When applying this principle, at least one test case should be based on each
separate equivalence class.

Let’s take the example of children gaining access to a special play structure. An input control on

age has the following requirement: 6 < age < 12 (the age should be greater than 6 but less than

12).

In this example, there are three equivalence classes:

• Age > 6 years
• Age in the range of 7 to 11 years
• Age < 12 years

Applying equivalence classes results in the following test cases:

• Age = 4 years (invalid)
• Age = 8 years (valid)
• Age = 15 years (invalid)

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 55

It is common in equivalence partitioning that there are fewer test cases than when carrying out
boundary value analysis. In other words, the coverage of the test cases applied in boundary
value analysis is much higher. In the play structure access example, we would have 5, 6, 7, 11,
12, and 13 as our boundaries in boundary value analysis, where we only have 3 in equivalence
partitioning. Nonetheless, equivalence partitioning is useful if you want to test with slightly less
coverage or if you need to test alphanumeric input values, for example, when considering
various documentation used for identification: passport, driver’s license, ID card, etc.

Checklist-based Test Technique

LO32 Learn how to test using a checklist. (K3)

The checklist-based test technique [XVI] involves the creation of a checklist to serve as the basis
for testing. Examples of the practical application of this technique can be seen in repetitive
activities such as delivering software to a test, acceptance, or production environment. Certain
aspects of security are also issues that can easily be handled with a checklist. On the checklist,
you list the checks you perform in a column next to columns with the options ‘Ok’ and ‘Not ok’
to be ticked off accordingly. Checklists can be created based on experience and can be
expanded by adding the cause of previous incidents. Using checklists in processes provides
predictability and consistency; checklists are also a good way to capture knowledge from very
experienced employees and transfer that knowledge to junior employees.

Example of the checklist based test technique:

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 56

With checklists, less experienced employees can check the same things as their more
experienced peers. Checklist-based tests can be combined quite well with other test techniques
such as the CRUD matrix, boundary value analysis, equivalence partitioning, or the semantic
test technique. Once conducted, however, a checklist should be maintained regularly as some
of the repetitive actions might change over time.

Practical uses of the checklist-based test technique:

• Layout
• Input values (screens and files)
• Output values
• File and field validation
• Correct error messages
• Missing fields
• Incorrect field length
• Incorrect field type (data type)
• Wrong position

Another practical application of this technique would be checking the completeness of delivery
to another environment. When an application is built, it often consists of different components
and files. After creation, these components have to be gathered for deployment to the next
environment. Although there are tools that can be of assistance, there might still be manual
actions—and every one of these actions is a quality risk to the software, as well as to testing in
the next environment. Therefore, in these situations, a checklist in which all necessary actions
are meticulously described can be useful.

Pairwise Testing Test Technique

LO33 Learn the test technique of pairwise testing. (K3)

Pairwise testing is a method of finding defects by combining two values of a variable. This test
technique assumes that most defects are caused by one factor or by the interaction of two
different factors. Where testing all possible combinations of input values would be impossible
or very tedious, pairwise testing can be an effective way to test every combination of two
random factors and encourages a better variety of test data.

Let’s take an example to illustrate how pairwise testing works. Imagine a system with three
defined input variables: “file format”, “role”, and “access level”. These defined variables have
several values listed in the following table:

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 57

In total, we have 4 x 2 x 3 values, so a total of 24 unique combinations for the input variables.

As applying the pairwise testing test technique involve focussing on only two input values at
once. Therefore, in the first step considering only the first two columns, will result in the
following table of combinations:

Here we have each input value from column “file format” with each different input value in
column “role” providing eight possibilites. As there are four different “file format” input values
and two different “role” input values, so 4 input values x 2 input values = 8 different test cases
for now.

Once all the possible combinations for the input values of the first two columns are clear, we
need to apply the same technique to the second and third columns to find out how many
combinations are possible. As there are two different “role” input values and three different

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 58

“access level” input values, we arrive at 2 input values x 3 input values = 6 test cases as seen
here:

One might assume at this point that you have 14 test cases; however this is not the case in
pairwise testing. The value in this technique is to get the most relevant coverage possible with a
smaller amount of test cases.

If we consider all of the 24 possible combinations, and now implement pairwise testing, we
simply need to make sure that all the above listed combinations of the previous two table
comparing two input values at a time are represented within the test cases, so all other test
cases can be removed.

For example, if we highlight the possible test cases in green that statify the first table
comparing the input values of “file format” and “role” we would highlight the following:

Now we would take the next table comparing the next two input values “role” and “access
level” and realize that we already have highlighted two of the six combinations. Therefore, in
pairwise testing, we simply need to make sure that the other four combinations are also
represented. Therefore we can highlight any of the rows that fulfill this in yellow, while trying to
cover as many combinations as possible. The remaining rows can be removed as seen here:

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 59

Now with we look at the remaining 12 possibilities and select the unique combinations of the
columns “file format” and “role” as well as the unique combinations of the columns “role” and
“access level”, this leads to the following table where four test cases (“7”, “8”, “13”, and “14”)
can be removed:

This leaves the following eight test cases:

In this example, it becomes clear that we have test cases that cover a wide variety of test data,
but we have not tested for example the combination of .pdf, employee, and orange (test case
“3”).

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 60

An advantage of pairwise testing is that the coverage of your test cases might be quite high;
however, all dependencies between the different variables are not tested. Also, one can
imagine when applying this technique can also produce combinations that are unrealistic to the
situation at hand [XVII].

Definitions

Boolean A result that can only have one of two possible values: true or
false, yes or no.

Coverage The extent to which your test cases cover the functionality to be
tested (tested functionality vs. existing functionality).

Detailed Test Case A test case on a very detailed level of abstraction. Detailed test
cases almost always consist of pre-conditions, an output
prediction, and a result.

High-Level Test Case A test case on a high level of abstraction that is usually meant to
derive detailed test cases from (or to provide high-level insight
into) the application.

Logical Test Case A test case that is derived from a test base consisting of
preconditions (the inputs) and post-conditions (the actions or
results). Logical test cases are based on logic, not concrete data.

Outcome Prediction The expected result of a test case.

Physical Test Case A logical test case with test data added to it.

Pre-condition A condition that must be met to run a test case.

Result (Actual) The actual result of a test case: ‘Ok’ or ‘Not OK.’

Test Process The collection of interrelated activities consists of test planning,
test monitoring and control, test analysis, test design, test
implementation, test execution, and test completion.

Test Case A set of preconditions, input values, actions (if any), expected
results, and postconditions, developed from test conditions.

Test Technique A structured way to derive test cases from a test base.

Test Script A set of instructions for conducting a test.

Test Design The activity that derives and specifies test cases from test
conditions. [V]

Variable An element, feature, or factor that is liable to vary or change.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 61

Practice 8: Understand the Importance of Good
Communication

LO34 Understand the importance of good communication in all your activities as a
tester. (K3)

We now have learned a large number of skills for testing software in an effective and structured
way. One skill serves to reinforce the previous practices: good communication.

The basic skills of communication include speaking, writing, listening, and reading. When
messages are communicated via verbal or written channels, it is important to verify that the
message has been delivered correctly and has been understood.

Messages always have a sender and a receiver. Good communication involves verifying, as the
sender of the message, that the message has been delivered correctly and has been
understood. As the receiver, verifying that your understanding of the communicated message
was what was intended is also a good communication practice. In addition to verbal and written
communication, there is also non-verbal communication, which can also be used to verify that
messages have been received and understood.

Validating communication is necessary because everyone has personal filters that can cause
messages to be processed in unexpected ways. Everyones’ filters are based on their personal
experience, background, cultural differences, upbringing, and beliefs. As a result, a message
intended one way may come across in different ways to different receivers. When testing, it is
important to verify that the messages you send have been understood as intended and that the
understanding of messages you receive was the same as intended by the sender.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 62

Communication can sometimes be difficult for several reasons: checking for understanding can
make people feel the sender is controlling them, is too meticulous, or is interfering too much
with their work. Also, people can come across as very confident, making you reluctant to ask
further questions yourself. Therefore, good communication also requires thoughtfulness, tact,
and soft skills. This practice is especially important because software development is a complex
set of activities that are often not tangible.

Let’s look at some examples of how you could apply this practice in conjunction with testing
practices. The “no assumptions” practice also assumes a similar concept because, with this
practice, you verify and/or validate everything and assume nothing.

The practice “test as early as possible” highlights the importance of reviewing. Reviewing or
having products reviewed is an excellent way to increase the quality of these products at an
early stage, and reviewing is all about verifying that the product is accurate, of good quality,
and complete. “Products” could mean anything from functional design, requirement, test
script, the result of risk analysis, etc. When sending products for review, good communication is
important because confirming if the recipient understands what the product entails as well as
what is expected of them can greatly improve the results received in the end. In doing so, the
entire review will be more valuable.

The practice of “documenting your tests” is also relevant to the practice of good
communication. By documenting your work and describing requirements or test cases clearly,
not only can the documentation be referenced at a later time, but there is also a higher chance
of you and others understand what is meant.

Another part of good communication is the management of expectations. It is important in our
work as testers that reasonable and realistic expectations are set and communicated to the
various stakeholders clearly and understandably. Managing expectations is important because
it minimizes surprises and prevents expectations and final results from being too far apart. It is
therefore important to communicate at the right time if, for example, you foresee that the
creation of a test script or the execution of a test will take much longer than initially expected.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 63

Definitions

Expectation Management The process of clarifying or adjusting certain expected
outcomes.

Non-verbal communication The body language we use when we express ourselves.

Receiver The recipient of a message or record, whether written or oral.

Sender The sender of a message or record, whether written or oral.

Verbal communication The words we choose to express ourselves.

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 64

Chapter 4: Quality Attributes, focusing on Security, Usability, and
Performance

In this chapter, we further discuss some important examples of quality attributes. To gain a
better understanding of what quality attributes are, we will focus on three that are relevant to
nearly every project: security, usability, and performance.

LO35 Learn the basics of testing for security. (K2)

LO36 Learn the basics of usability testing. (K1)

LO37 Learn the basics of performance testing. (K1)

Quality Attribute: Security

A very helpful aid when testing security in applications is The OWASP Top Ten [XVIII]. The
OWASP (Open Web Application Security Project) is a non-profit foundation focused on
improving software security. Every few years, the OWASP releases a list of the ten most critical
security risks, called “The OWASP Top Ten”. The OWASP Top Ten is widely recognized as the
first step for any company interested in improving the level of security in the software that they
develop, as well as the methods by which those creating the software conduct their work. The
focus is not only on the security software being created but also on the business processes and
best practices in the workplace, for example, it would not be a good practice to have passwords
written down near the working space. The OWASP Top Ten includes many valuable suggestions
for how to include various best practices in testing (or development) processes. More specific
information, including examples and detailed information on how to test for security flaws, is to
be found at https://www.owasp.org.

Granting permissions is easy and enables users to do many things in a development and test
trajectory. Often this is done from a “user is king” service point of view. To avoid broken access
control, users should be granted permission to do what is necessary to fulfill their tasks.

Quality Attribute Security: OWASP Top Ten example: Broken Access Control

Broken access control usually means vulnerabilities in roles and permissions. Well-designed
access control should be maintained and created so that users cannot act outside their
intended authorization. Failure to design access control appropriately could lead to
unauthorized disclosure, updating, or deletion of data, or the use of functions that are outside
users’ intended authorizations. For example, take a small company in which users in the
financial administration department are granted all permissions to financial administration.
These permissions could lead to their being able to raise their salaries. This is why it is
important to reiterate that the roles and permissions system must be properly designed,
aligned, and tested. A good rule of thumb here is to grant only the permissions that are
needed—no more.

https://www.owasp.org/

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 65

The administrator role should only be used when necessary, and should not be shared with an
infinite number of people. A specific account should be created to accommodate other
(possibly admin) authorizations, and also set up a procedure that makes sure permissions can
be revoked if necessary, e.g., when a user leaves the company.

Quality Attribute Security: CRUD Matrix

A good way to test (and also design and align) roles and permissions is to set up a simple
authorization matrix. This authorization matrix is also called a CRUD (Create, Read, Update,
Delete) matrix. An authorization matrix is created by placing all roles and permissions, linked to
the functionality they are supposed to exercise, within a table.

 Customer Data Order Data Product Data

Manager CRUD CRUD CRUD

Employee CRU CRU RU

Customer RU CR

Example simple CRUD matrix

By using a CRUD matrix, you can find missing steps or check whether data is (allowed to be)
accessible. Working through the CRUD matrix and conducting tests with all different roles (one
by one) we can verify all granted permissions as well as the actions that are not allowed, and
then confirm again that what is not allowed is indeed not possible. If we take our example
CRUD matrix, and follow the “Employee” row, for entities “Customer Data” and “Order Data”
we see that we need to test for the creation, reading, and updating of data, we must not forget
to confirm if the employee is unable to delete data in these entities.

Quality Attribute Security: OWASP Top Ten example: Cryptographic Failures

Cryptographic failuress focus on errors that are the result of encryption. This may be related to
the process of encryption itself or the lack of necessary encryption. These failures can lead to
the exposure of sensitive data in REST or transition, for example, a password database that uses
a simple, cracked, or one-way encryption to store passwords.

A good starting point in resolving these issues is proper data classification: this determines the
degree of confidentiality of the data. This is why passwords, medical records, credit card
numbers, personal information, and confidential business information require extra protection,
specifically if that data is covered by privacy laws like the EU’s General Data Protection
Regulation (GDPR) or other standards.

After classification, the next step is to properly secure the data with modern, uncompromised
encryption methods. These actions apply to both internal and external application links. See the
OWASP website for more prevention suggestions and testing tips.

“Broken Access Control” and “Cryptographic Failures” are only two of the items from The
OWASP Top Ten for making your software and working environment secure. It is nearly

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 66

impossible to exclude the possibility of being hacked, but the goal should be to avoid it as much
as possible. The challenge is to detect hacking quickly and ensure that you maintain access to
(and control of) your data. Proper monitoring, backup procedures, fallback procedures, and
restore procedures are key to maintaining secure data. If these procedures are in place,
practiced, and tested regularly, you are already on a good path to better security practices.

The OWASP website mentions several more tips and tricks for secure development and security
testing: https://www.owasp.org.

Quality Attribute: Usability

Usability refers to the degree to which a product or system can be used by specified users to
effectively, efficiently, and successfully achieve specified goals in a specified context of use.

If we consider that we are checking a website, app, or on-premise system, the main screen is
often the most important page when it comes to usability. Not only is it the most visited part of
the software, it also determines whether the user can (or even will) continue to use the
software to access all other parts. This is where users will form their first opinion of the
software, so recognition of suitability is extremely important. Once the users’ needs are met,
the user will try to accomplish their goal(s) by using the system. To maximize user satisfaction,
clear inputs should be provided and the most important tasks should be displayed. The main
screen is also an ideal place to distinguish yourself from the competition.

For best results, clear navigation and information architecture are essential. The key is to focus
on the task itself. You can orient yourself to the task if you know the need of a specific user. For
example, if you are granted access to something, navigation in that space must be clear. Users
want to know where they are, what they can do, and where they can go. You also want this
information delivered in the most recognizable way. Elements for a website might include the
“home” link, a hamburger menu, logical categorization (bread crumbs), a sitemap, etc.

It is important to match the designer’s mental model with the user’s mental model. To take this
into account, consider what the user’s main focus is: this should be the most important CTA
(Call To Action). A CTA is the most important button in achieving a goal. This goal is usually what
the visitor aims for, and this same goal usually benefits the business because it will contribute
to achieving their business goals. Therefore, be sure to clearly state what the most important
tasks are.

In a form, it should be clear where to fill something out and what needs to be filled out.
Immediate feedback for both correct and incorrect entries should be provided. Consider how
you would display whether something is mandatory or in what format a phone number or
postal code must be entered. If something goes wrong, feedback should be given directly to the
user for improvement.

https://www.owasp.org/

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 67

When considering the quality attribute usability, the main focus should always be on the goals
of the user and the overall goals of the client itself. In the best case, these goals would overlap
and the software should function as smoothly as possible for these goals to be met.

Quality Attribute: Performance

Performance testing can be divided into 2 different main topics: load testing and stress testing.
Load testing involves simulating a certain load of users and looking at response times under this
load. Stress testing involves finding the limit of what the system can handle in terms of peak
load.

A good performance test requires specific knowledge and tools: detailed knowledge of the
infrastructure and how it relates on the right scale to the infrastructure of the production
environment. For a good performance test, it is crucial to have an environment that is similar or
almost identical to the production environment. Infrastructural components such as switches,
hardware, and firewalls and their sizing need to be considered to accurately simulate the
system load. To achieve this load, often specific tools are required to simulate a large number
of simultaneous users.

Another way to get a good indication of performance is by making a user load profile of the
future environment. This can provide a better understanding of what load is required of the
system, and at which times of the day. In addition, setting up proper monitoring, including
timestamps, is a mitigating measure in performance testing.

Definitions

Call to Action The most important action you want the visitor to perform

Load Testing A type of performance testing performed to evaluate the
behavior of a component or system under different loads, usually
between expected conditions of low, normal and peak usage.

Main Screen The most important screen of an application from which most
actions can be done, usually the first screen after logging into an
application.

Perfection User
Interaction

The degree to which a user interface allows the user to have an
enjoyable and satisfying interaction.

Performance The speed at which the information system handles transactions.

Recognition of Suitability The degree to which users can recognize whether a product or
system is appropriate for their needs.

Security Assurance that consultation or mutation of the data is possible
only by those authorized to do so.

Stress Testing A form of performance testing that aims to evaluate a
component or system at or beyond the limits of the workload
expected or specified for it, or with limited availability of
resources such as memory or server capacity.

Usability The degree to which a product or system can be used effectively,

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 68

efficiently and satisfactorily by users.

References

Reference Source
[I] Book: L. Anderson, P. W. Airasian, and D. R. Krathwohl, A Taxonomy for

Learning, Teaching, and Assessing: A Revision of Bloom’s Taxonomy of
Educational Objectives, 2001, Allyn & Bacon, ISBN 03-21084-05-5

[II] Website: ISO 9000:2015 Standard information:
https://www.iso.org/standard/45481.html

[III] Website: American Society for Quality glossary: https://asq.org/quality-
resources/quality-glossary/

[IV] Website: ISO 25010 Standard information:
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010

[V] Website: ISTQB® glossary application: https://glossary.istqb.org/

[VI] Website: Wikipedia page for Vilfredo Pareto:
https://en.wikipedia.org/wiki/Vilfredo_Pareto

[VII] Article: Doran, G. T. (1981). "There's a S.M.A.R.T. Way to Write
Management's Goals and Objectives", Management Review, Vol. 70,
Issue 11, pp. 35-36.

[VIII] Article: Jan Vanthienen, "The History of Modeling Decisions using Tables
(Part 1)" Business Rules Journal, Vol. 13, No. 2, (Feb. 2012):
https://www.brcommunity.com/articles.php?id=b637

[IX] Book: Boehm, B. (1981) Software Engineering Economics, Prentice-Hall
Inc., ISBN 01-38221-22-7

[X] Website: Agile Alliance glossary:
https://www.agilealliance.org/glossary/user-story-template/

[XI] Website: Wikipedia page for Flowchart:
https://en.wikipedia.org/wiki/Flowchart

[XII] Book: Pol. M., Teunissen. R., Veenendaal van. E., Testen volgens TMap
2e druk, p326, ISBN 90-72194-58-6

[XIII] Book: Beizer, B. (1990) Software Testing Techniques. 2nd Edition, Van
Nostrand Reinhold, New York. ISBN 18-50328-80-3

[XIV] Book: Burnstein, Ilene (2003), Practical Software Testing, Springer-
Verlag, ISBN 0-387-95131-8

[XV] Book: G. Myers, The Art of Software Testing; John Wiley, New York,
1979. ISBN 0-471-04328-1

[XVI] Website: ISTQB Foundation syllabus, 2019 version, p61:
https://www.istqb.org/certifications/certified-tester-foundation-level

[XVII] Website: Software Testing Help regarding for Pairwise Testing:
https://www.softwaretestinghelp.com/what-is-pairwise-testing/

[XVIII] Website: OWASP Top10: https://owasp.org/Top10/

UC-TFSE Syllabus V1.0 - English

V1.0, April 2023 © United Certifications (UC) 69

[XIX] Article: The New Religion of Risk Management, Bernstein, 1996:
https://hbr.org/1996/03/the-new-religion-of-risk-management

